Parametric Blind Deconvolution of Microscopic Images: Further Results

نویسنده

  • Joanne Markham
چکیده

Blind deconvolution microscopy, the simultaneous estimation of the specimen function and the point spread function (PSF) of the microscope is an under-determined problem with non-unique solutions. The non-uniqueness is commonly avoided by enforcing constraints on both the specimen function and the PSF, such as non-negativity and band limitation. These constraints are some times enforced in ad hoc ways. In addition, many of the existing methods for blind deconvolution estimate the PSF pixel by pixel thus greatly increasing the number of parameters to estimate and slowing the convergence of the algorithm. We derived a maximum-likelihood-based method for blind deconvolution in which we assume that the PSF follows a mathematical expression that depends on a small number of parameters (e.,g. less than 20). The algorithm then estimates the unknown parameters together with the specimen function. The mathematical model ensures that all the constraints of the PSF are satisfied and the maximum likelihood approach ensures that the specimen is non-negative. This parametric blind deconvolution method successfully removes out-of-focus blur but its degree of success depends on the features of the specimen. Specimen features that fall in mostly the null space of the PSF are more difficult to recover and make PSF estimation more difficult.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

PSO-Optimized Blind Image Deconvolution for Improved Detectability in Poor Visual Conditions

Abstract: Image restoration is a critical step in many vision applications. Due to the poor quality of Passive Millimeter Wave (PMMW) images, especially in marine and underwater environment, developing strong algorithms for the restoration of these images is of primary importance. In addition, little information about image degradation process, which is referred to as Point Spread Function (PSF...

متن کامل

Parametric blind deconvolution of fluorescence microscopy images : Preliminary results

Three-dimensional microscopy by computational deconvolution methods requires accurate knowledge of the point spread function (PSF) that characterizes the microscope. Experimental PSF’s can only be measured over small regions about focus because the small objects necessary for PSF measurement are dim. Theoretical computation of the PSF requires accurate knowledge of all the experimental setup pa...

متن کامل

A recursive soft-decision approach to blind image deconvolution

This paper presents a new approach to blind image deconvolution based on soft-decision blur identification and hierarchical neural networks. Traditional blind algorithms require a hard-decision on whether the blur satisfies a parametric form before their formulations. As the blurring function is usually unknown a priori, this precondition inhibits the incorporation of parametric blur knowledge ...

متن کامل

Non-parametric PSF estimation from celestial transit solar images using blind deconvolution

Context: Characterization of instrumental effects in astronomical imaging is important in order to extract accurate physical information from the observations. The measured image in a real optical instrument is usually represented by the convolution of an ideal image with a Point Spread Function (PSF). Additionally, the image acquisition process is also contaminated by other sources of noise (r...

متن کامل

Initialization of iterative parametric algorithms for blind deconvolution of motion-blurred images.

Performances of iterative blind deconvolution methods for motion-blurred images are usually reduced depending on the accuracy of the required initial guess of the blur. We examine this dependency, and a two-stage restoration procedure is proposed: First we perform a direct technique with a single straight-forward process to produce a rough initial estimate of the blur, and then an iterative tec...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1998